Abstract

Dynamical decoupling techniques are a versatile tool for engineering quantum states with tailored properties. In trapped ions, nested layers of continuous dynamical decoupling (CDD) by means of radio-frequency field dressing can cancel dominant magnetic and electric shifts and therefore provide highly prolonged coherence times of electronic states. Exploiting this enhancement for frequency metrology, quantum simulation or quantum computation, poses the challenge to combine the decoupling with laser-ion interactions for the quantum control of electronic and motional states of trapped ions. Ultimately, this will require running quantum gates on qubits from dressed decoupled states. We provide here a compact representation of nested CDD in trapped ions, and apply it to electronic S and D states and optical quadrupole transitions. Our treatment provides all effective transition frequencies and Rabi rates, as well as the effective selection rules of these transitions. On this basis, we discuss the possibility of combining CDD and Mølmer–Sørensen gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.