Abstract

The self-generated electric and magnetic fields in laser induced plasmas (LIPs) in air during the first 40 ns are experimentally investigated using different electric, magnetic and optical techniques. To produce LIPs we used the second and third harmonics (532 and 355 nm) of a Nd:YAG nanosecond pulsed laser with a range of irradiance from to W . The variation in time of the electric field was detected using the tip of a coaxial cable, and the spontaneous magnetic field (SMF) was measured using a probe. The spatial and temporal evolution of the plasma was studied using shadowgraphy and fast photography. It was observed that produced LIPs using pulses of 532 and 355 nm, generate plasmas of double core over the laser axis, while we observed that produced LIPs by pulses of 1064 nm are composed of a single core plasma. We found that the double-core plasmas have a quadrupole distribution of the charge, consisting of two oppositely directed dipoles which in turn correspond to each plasma core. The magnetic diagnostic showed an oscillating magnetic field azimuthal to the main axis of the double-plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.