Abstract

We conjecture the existence of four independent gradings in colored HOMFLYPT homology, and make qualitative predictions of various interesting structures and symmetries in the colored homology of arbitrary knots. We propose an explicit conjectural description for the rectangular colored homology of torus knots, and identify the new gradings in this context. While some of these structures have a natural interpretation in the physical realization of knot homologies based on counting supersymmetric configurations (BPS states, instantons, and vortices), others are completely new. They suggest new geometric and physical realizations of colored HOMFLYPT homology as the Hochschild homology of the category of branes in a Landau–Ginzburg B-model or, equivalently, in the mirror A-model. Supergroups and supermanifolds are surprisingly ubiquitous in all aspects of this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.