Abstract

Recently, benefitting from the storage and retrieval efficiency of hashing and the powerful discriminative feature extraction capability of deep neural networks, deep cross-modal hashing retrieval has drawn more and more attention. To preserve the semantic similarities of cross-modal instances during the hash mapping procedure, most existing deep cross-modal hashing methods usually learn deep hashing networks with a pairwise loss or a triplet loss. However, these methods may not fully explore the similarity relation across modalities. To solve this problem, in this paper, we introduce a quadruplet loss into deep cross-modal hashing and propose a quadruplet-based deep cross-modal hashing (termed QDCMH) method. Extensive experiments on two benchmark cross-modal retrieval datasets show that our proposed method achieves state-of-the-art performance and demonstrate the efficiency of the quadruplet loss in cross-modal hashing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.