Abstract

AbstractThe design of efficient nonlinear optical (NLO) crystals continues to pose significant challenges due to the difficulty of assembling polar NLO‐active modules in an optimal additive fashion. We report herein the first NLO‐active mercuric nitrates A2Hg(NO3)4 (A=(KHNO), Rb (RHNO)), for which assembly is induced by ionic polarization of the d10 cations. The two new crystalline compounds are isostructural, featuring interesting pseudo‐diamond‐like structures with parallel [Hg(NO3)4] modules, and leading to strong powder second‐harmonic generation (SHG) responses of 9.2 (KHNO) and 8.8 (RHNO) times that of KH2PO4. In combination with the simple solution preparation of centimeter‐scale crystals, sufficient birefringence, and short ultraviolet (UV) cutoff edges, these attributes make KHNO and RHNO promising candidates for UV NLO materials. Theoretical calculations and single‐crystal structure analysis reveal that the newly‐developed highly condensed and distorted [Hg(NO3)4] module, with an Hg2+ cation that is quadruply bidentate nitrate‐ligated, is crucial for the significant SHG responses. This work highlights the potential importance of modules with multiple bidentate ligands for the development of high‐performing next‐generation NLO materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.