Abstract
Quadruple junction solar cells and modules are presented, which consist of hydrogenated amorphous (a-Si:H) and microcrystalline silicon (µc-Si:H) in the a-Si:H/a-Si:H/µc-Si:H/µc-Si:H configuration. The highest measured conversion efficiency of a mini-module with an aperture area of 61.44 cm2 was 13.4% before and 12.0% after more than 1000 h of light soaking, respectively. In this paper, we discuss the advantages of the quadruple junction design over the common tandem design, which is ascribed mainly to the fact that the total absorber thickness can be increased while electronic properties and stability are maintained or even improved. The role of the µc-SiOx:H intermediate reflector is highlighted and an optimization of the doping concentration in this layer is presented. Furthermore, the advantage of the high maximum power voltage for the monolithic cell interconnection laser design of modules is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.