Abstract

Rotor-craft style UAV, such as the quadrotor, has become increasingly popular with researchers due to its advantages over fixed-wing UAV. The quadrotor is highly maneuverable, can perform vertical take-off and landing (VTOL), and can hover flight capability. Nevertheless, handling the quadrotor complex, highly nonlinear dynamics is difficult and challenging. A suitable control system is needed to control the quadrotor system effectively. Therefore, this paper presents a review of different controller design techniques used by researchers over the past years for the quadrotor rotational and translational stabilization control. Three categories are discussed: linear controller, nonlinear controller, and intelligent controller. Based on their performance specifications, the system rise time, settling time, overshoot, and steady-state error are discussed. Finally, a comparative analysis is tabulated, summarizing the literature in the performance specifications described above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.