Abstract
Phase imaging with a high-resolution wavefront sensor is considered. This is based on a quadriwave lateral shearing interferometer mounted on a non-modified transmission white-light microscope. The measurement technology is explained both in the scope of wave optics and geometrical optics in order to discuss its implementation on a conventional microscope. In particular we consider the effect of a non spatially coherent source on the phase-image signal-to-noise ratio. Precise measurements of the phase-shift introduced by microscopic beads or giant unilamellar vesicles validate the principle and show the accuracy of the methods. Diffraction limited images of living COS-7 cells are then presented, with a particular focus on the membrane and organelle dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.