Abstract

AbstractA novel strategy for developing low‐order membrane elements with analytical element stiffness matrices is proposed. First, some complete low‐order basic analytical solutions for plane stress problems are given in terms of the new quadrilateral area coordinates method (QACM‐II). Then, these solutions are taken as the trial functions for developing new membrane elements. Thus, the interpolation formulae for displacement fields naturally possess second‐order completeness in physical space (Cartesian coordinates). Finally, by introducing nodal conforming conditions, new 4‐node and 5‐node membrane elements with analytical element stiffness matrices are successfully constructed. The resulting models, denoted as QAC‐ATF4 and QAC‐ATF5, have high computational efficiency since the element stiffness matrices are formulated explicitly and no internal parameter is added. These two elements exhibit excellent performance in various bending problems with mesh distortion. It is demonstrated that the proposed strategy possesses advantages of both the analytical and the discrete method, and the QACM‐II is a powerful tool for constructing high‐performance quadrilateral finite element models. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.