Abstract
Controlled laboratory study using a cross-sectional design. To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, <28 kg/m(2)) underwent 3-T magnetic resonance imaging (MRI) and 3-D motion capture. Standard MRI sequences were used for articular and meniscal cartilage T1rho and T2 relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .21-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Orthopaedic & Sports Physical Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.