Abstract

AbstractIn this paper, a new multiple‐input multiple‐output transmission technique called quadrature spatial modulation (QSM) is proposed and analyzed in the presence of imperfect channel estimation at the receiver. In QSM, conventional spatial constellation diagram of spatial modulation (SM) system is expanded to include both in‐phase and quadrature components. As such, significant enhancement in the overall spectral efficiency is achieved while retaining all inherent advantages of SM technique, such as inter‐channel interference avoidance, single radio frequency chain transmitter and low receiver complexity. It is shown that significant performance enhancements can be achieved as compared with SM, Alamouti, and spatial multiplexing systems. Besides, the impact of Gaussian imperfect channel estimation on the performance of QSM system is studied. A closed‐form expression for the pairwise error probability of generic QSM system is derived and used to calculate a tight upper bound of the average bit error probability over Rayleigh fading channels with perfect and imperfect channel knowledge. Also, simple asymptotic expression is derived and analyzed. Obtained Monte Carlo simulation results highlight the accuracy of the conducted analysis. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.