Abstract

This paper proposes a new multiple-input–multiple-output (MIMO) technique called quadrature spatial modulation (QSM). QSM enhances the overall throughput of conventional SM systems by using an extra modulation spatial dimension. The current SM technique uses only the real part of the SM constellation, and the proposed method in this paper extends this to in-phase and quadrature dimensions. It is shown that significant performance enhancements can be achieved at the expense of synchronizing the transmit antennas. Additionally, a closed-form expression for the pairwise error probability (PEP) of generic QSM system is derived and used to calculate a tight upper bound of the average bit error probability (ABEP) over Rayleigh fading channels. Moreover, a simple and general asymptotic expression is derived and analyzed. Obtained Monte Carlo simulation results corroborate the accuracy of the conducted analysis and show the significant enhancements of the proposed QSM scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.