Abstract

H1-conforming Galerkin methods on polygonal meshes such as VEM, BEM-FEM and Trefftz-FEM employ local finite element functions that are implicitly defined as solutions of Poisson problems having polynomial source and boundary data. Recently, such methods have been extended to allow for mesh cells that are curvilinear polygons. Such extensions present new challenges for determining suitable quadratures. We describe an approach for integrating products of these implicitly defined functions, as well as products of their gradients, that reduces integrals on cells to integrals along their boundaries. Numerical experiments illustrate the practical performance of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.