Abstract

The azimuth phase coding (APC) technique is known for its very low implementation complexity and its effectiveness for point and distributed ambiguities in conventional synthetic aperture radar (SAR) systems. In recent years, as an extension, the APC technique has been briefly discussed for multichannel SAR systems. However, the properties of the APC technique are no longer guaranteed in the multichannel SAR systems based on the digital beamforming (DBF) on-receive, and only a slight APC gain in the suppression of the range ambiguity can be obtained. In this article, we first provide a more thorough analysis for an APC-multichannel SAR system with respect to a uniform pulse-repetition frequency (PRF). Then, the APC/multichannel SAR system with nonuniform spatial sampling is briefly discussed, and an improved reconstruction approach based on a quadratically constrained optimization model is proposed to increase greatly the APC gain with respect to existing multichannel reconstruction algorithms. This proposed approach allows the minimization of the range ambiguity with a given azimuth-ambiguity constraint. In particular, for some specific PRFs, the proposed method permits a cancellation of the odd-order range ambiguity. Finally, simulation experiments are performed to verify the advantages and effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.