Abstract

In this paper, we introduce a novel point-to-surface representation for 3D point cloud learning. Unlike the previous methods that mainly adopt voxel, mesh, or point coordinates, we propose to tackle this problem from a new perspective: learn a set of quadratic terms based static and global reference surfaces to describe 3D shapes, such that the coordinates of a 3D point (x, y, z) can be extended to quadratic terms (xy, xz, yz, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\ldots $ </tex-math></inline-formula> ) and transformed to the relationship between the local point and the global reference surfaces. Then, the static surfaces are changed into dynamic surfaces by adaptive contribution weighting to improve the descriptive capability. Towards this end, we propose our point-to-surface representation, a new representation for 3D point cloud learning that has not been attempted before, which can assemble local and global geometric information effectively by building connections between the point cloud and the learned reference surfaces. Given 3D points, we show how the reference surfaces are constructed, and how they are inserted into the 3D learning pipeline for different tasks. The experimental results confirm the effectiveness of our new representation, which has outperformed the state-of-the-art methods on the tasks of 3D classification and segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.