Abstract

This paper deals with the problem of quadratic stability analysis and quadratic stabilization for uncertain linear discrete-time systems with state delay. The system under consideration involves state time delay and time-varying norm-bounded parameter uncertainties appearing in all the matrices of the state-space model. Necessary and sufficient conditions for quadratic stability and quadratic stabilization are presented in terms of certain matrix inequalities, respectively. A robustly stabilizing state feedback controller can be constructed by using the corresponding feasible solution of the matrix inequalities. Two examples are presented to demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.