Abstract

This paper is concerned with the quadratic stability analysis and robust distributed controllers design of both continuous-time and discrete-time uncertain spatially interconnected systems (USISs), where uncertainties are modeled by linear fractional transformation (LFT). The well-posedness, quadratic stability, and contractiveness of USISs are properly defined for the first time. A sufficient condition employing the given system matrices is established to check the well-posedness, quadratic stability and contractiveness. This condition is simpler than the existing conditions based on the decomposition of system matrices. Based on the new condition derived, a sufficient condition is given for the existence of robust distributed controllers and a constructive method is then presented for the design of robust distributed controllers. The advantage of the proposed constructive approach is that it employs the given system matrices while the existing methods conduct the bilinear transformation on these matrices when design controllers, and consequently, the constructive approach in this paper is computationally more efficient than the existing methods. Several examples are included to demonstrate the simplicity, efficiency and applicability of the derived theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call