Abstract

The existence and stability of three-wave solitons, both (1+1) and (2+1) dimensional, that result from a double-resonance (type I plus type II) parametric interaction in a purely quadratic nonlinear medium are investigated. We demonstrate the existence of a family of stable solitons for a broad parameter range in the double-resonance model. Further, these solitons exhibit multistability, a property that is potentially useful for optical switching applications. We introduce a way to measure the quality of multistability and use this measure to compare the double-resonance model with single-resonance models in χ(2) media. We also discuss the modulational instability of the double-resonance system and present physical estimates of the power required for soliton generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.