Abstract

This paper studies a class of representations (called quadratic) of the canonical commutation relations over symplectic spaces of arbitrary dimension, which naturally generalizes coherent and symplectic (i.e. quasifree) representations and which has previously been heuristically employed in the special case of finite degrees of freedom in the physics literature. An explicit characterization of canonical quadratic transformations in terms of a 'standard form' is given, and it is shown that they can be exponentiated to give representations of the Weyl algebra. Necessary and sufficient conditions are presented for the unitary equivalence of these representations with the Fock representation. Possible applications to quantum optics and quantum field theory are briefly indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.