Abstract
Visual detections have attracted great research attentions recently due to their convenient monitoring of the target analytes without using any advanced instruments. However, achieving visual detection of trace amounts of biomolecules with PCR-like sensitivity remains a major challenge. In current work, we describe a new quadratic signal amplification strategy for sensitive visual detection of HIV DNA biomarkers based on exonuclease III (Exo III)-assisted DNA recycling amplification and DNAzymes. The presence of the target HIV DNA leads to two independent and simultaneous DNA recycling processes to achieve quadratic signal amplification with the assistance of Exo III. This quadratic signal amplification results in catalytic cleavage of the G-quadruplex sequence-locked hairpin probes to release numerous active G-quadruplex sequences, which further associate with hemin to form DNAzymes and cause significantly intensified color change for sensitive and visual detection of HIV DNA down to 2.5pM. The proposed visual detection method employs un-modified hairpin DNA as probes, avoids using any complex and expensive instruments for signal transduction and is essentially simple. This method also shows single-base mismatch discrimination capability as well. All these features make our developed DNA detection method holds great potential for visual monitoring of various DNA biomarkers at ultralow levels with careful and proper probe designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.