Abstract
This paper investigates the general quadratic programming problem, i.e., the problem of finding the minimum of a quadratic function subject to linear constraints. In the case where, over the set of feasible points, the objective function is bounded from below, this problem can be solved by the minimization of a linear function, subject to the solution set of a linear complementarity problem, representing the Kuhn-Tucker conditions of the quadratic problem. To detect in the quadratic problem the unboundedness from below of the objective function, necessary and sufficient conditions are derived. It is shown that, when these conditions are applied, the general quadratic programming problem becomes equivalent to the investigation of an appropriately formulated linear complementarity problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.