Abstract

The purpose of this work is to present a spatially accurate, intensity-based DIR optimization formulation that can be solved with a straightforward gradient-free quadratic penalty algorithm and is suitable for 4D thoracic computed tomography (4DCT) registration. Additionally, a novel regularization strategy based on the well-known leave-one-out robust statistical model cross-validation method is introduced. The proposed Quadratic Penalty DIR (QPDIR) method minimizes both an image dissimilarity term, which is separable with respect to individual voxel displacements, and a regularization term derived from the classical leave-one-out cross-validation statistical method. The resulting DIR problem lends itself to a quadratic penalty function optimization approach, where each subproblem can be solved by straightforward block coordinate descent iteration. The spatial accuracy of the method was assessed using expert-determined landmarks on ten 4DCT datasets available on www.dir-lab.com. The QPDIR algorithm achieved average millimeter spatial errors between 0.69 (0.91) and 1.19 (1.26) on the ten test cases. On all ten 4DCT test cases, the QPDIR method produced spatial accuracies that are superior or equivalent to those produced by current state-of-the-art methods. Moreover, QPDIR achieved accuracies at the resolution of the landmark error assessment (i.e., the interobserver error) on six of the ten cases. The QPDIR algorithm is based on a simple quadratic penalty function formulation and a regularization term inspired by leave-one-out cross validation. The formulation lends itself to a parallelizable, gradient-free, block coordinate descent numerical optimization method. Numerical results indicate that the method achieves a high spatial accuracy on 4DCT inhale/exhale phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.