Abstract
For any odd prime number [Formula: see text], let [Formula: see text] be the Legendre symbol, and let [Formula: see text] be the sequence of positive nonresidues modulo [Formula: see text], i.e. [Formula: see text] for each [Formula: see text]. In 1957, Burgess showed that the upper bound [Formula: see text] holds for any fixed [Formula: see text]. In this paper, we prove that the stronger bound [Formula: see text] holds for all odd primes [Formula: see text] provided that [Formula: see text] where the implied constants are absolute. For fixed [Formula: see text], we also show that there is a number [Formula: see text] such that for all odd primes [Formula: see text], there are [Formula: see text] natural numbers [Formula: see text] with [Formula: see text] provided that [Formula: see text]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.