Abstract
For nonautonomous linear equations x ′ = A ( t ) x , we show how to characterize completely nonuniform exponential dichotomies using quadratic Lyapunov functions. The characterization can be expressed in terms of inequalities between matrices. In particular, we obtain converse theorems, by constructing explicitly quadratic Lyapunov functions for each nonuniform exponential dichotomy. We note that the nonuniform exponential dichotomies include as a very special case (uniform) exponential dichotomies. In particular, we recover in a very simple manner a complete characterization of uniform exponential dichotomies in terms of quadratic Lyapunov functions. We emphasize that our approach is new even in the uniform case. Furthermore, we show that the instability of a nonuniform exponential dichotomy persists under sufficiently small perturbations. The proof uses quadratic Lyapunov functions, and in particular avoids the use of invariant unstable manifolds which, to the best of our knowledge, are not known to exist in this general setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.