Abstract

For a class of nonlinear harmonic gear drive systems with mismatched uncertainties, a novel robust control method is presented on the basis of quadratic integral sliding mode surface, and the closed-loop system has satisfying performance and strong robustness against mismatched uncertainties and nonlinear disturbances. Considering time-varying nonlinear torques and parameters variations which are caused by nonlinear frictions and backlash, a nonlinear harmonic gear drive system mathematic model is established and the effect of nonlinear parts is compensated during control system design. It is proven that the quadratic integral sliding mode surface can be reached in finite time and the closed-loop system is asymptotic stable robustly. The simulation studies are carried out in comparison with traditional linear sliding mode control and integral sliding mode control, verifying the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.