Abstract
The paper promotes the study of computational aspects, primarily the convergence rate, of nonlinear dynamical systems from a combinatorial perspective. The authors identify the class of symmetric quadratic systems. Such systems have been widely used to model phenomena in the natural sciences, and also provide an appropriate framework for the study of genetic algorithms in combinatorial optimisation. They prove several fundamental general properties of these systems, notably that every trajectory converges to a fixed point. They go on to give a detailed analysis of a quadratic system defined in a natural way on probability distributions over the set of matchings in a graph. In particular, they prove that convergence to the limit requires only polynomial time when the graph is a tree. This result demonstrates that such systems, though nonlinear, are amenable to quantitative analysis. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.