Abstract
We introduce a notion of quadratic duality for chiral algebras. This can be viewed as a chiral version of the usual quadratic duality for quadratic associative algebras. We study the relationship between this duality notion and the Maurer-Cartan equations for chiral algebras, which turns out to be parallel to the associative algebra case. We also present some explicit examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.