Abstract

In this paper we compute the intersection number of two double ramification cycles (with different ramification profiles) and the top Chern class of the Hodge bundle on the moduli space of stable curves of any genus. These quadratic double ramification integrals are the main ingredient for the computation of the double ramification hierarchy associated to the infinite dimensional partial cohomological field theory given by $\exp(\mu^2 \Theta)$ where $\mu$ is a parameter and $\Theta$ is Hain's theta class, appearing in Hain's formula for the double ramification cycle on the moduli space of curves of compact type. This infinite rank double ramification hierarchy can be seen as a rank $1$ integrable system in two space and one time dimensions. We prove that it coincides with a natural analogue of the KdV hierarchy on a noncommutative Moyal torus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.