Abstract

The convergence of a penalty method for solving the discrete regularized American option valuation problem is studied. Sufficient conditions are derived which both guarantee convergence of the nonlinear penalty iteration and ensure that the iterates converge monotonically to the solution. These conditions also ensure that the solution of the penalty problem is an approximate solution to the discrete linear complementarity problem. The efficiency and quality of solutions obtained using the implicit penalty method are compared with those produced with the commonly used technique of handling the American constraint explicitly. Convergence rates are studied as the timestep and mesh size tend to zero. It is observed that an implicit treatment of the American constraint does not converge quadratically (as the timestep is reduced) if constant timesteps are used. A timestep selector is suggested which restores quadratic convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.