Abstract
In this paper, we consider backward stochastic differential equations driven by G-Brownian motion (GBSDEs) under quadratic assumptions on coefficients. We prove the existence and uniqueness of solution for such equations. On the one hand, a priori estimates are obtained by applying the Girsanov type theorem in the G-framework, from which we deduce the uniqueness. On the other hand, to prove the existence of solutions, we first construct solutions for discrete GBSDEs by solving corresponding fully nonlinear PDEs, and then approximate solutions for general quadratic GBSDEs in Banach spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.