Abstract

The goal of this paper is to study the switched stochastic control problem of discrete-time linear systems with multiplicative noises. We consider both the quadratic and the H∞ criteria for the performance evaluation. Initially we present a sufficient condition based on some Lyapunov–Metzler inequalities to guarantee the stochastic stability of the switching system. Moreover, we derive a sufficient condition for obtaining a Metzler matrix that will satisfy the Lyapunov–Metzler inequalities by directly solving a set of linear matrix inequalities, and not bilinear matrix inequalities as usual in the literature of switched systems. We believe that this result is an interesting contribution on its own. In the sequel we present sufficient conditions, again based on Lyapunov–Metzler inequalities, to obtain the state feedback gains and the switching rule so that the closed loop system is stochastically stable and the quadratic and H∞ performance costs are bounded above by a constant value. These results are illustrated with some numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.