Abstract

Quadrant detectors (QD) are mainly used in research and industries for displacement measurement purposes due to their high sensitivity and accuracy as compared to other photodiode devices. Their scope extend to sub-nanometer scales and they are also operable at a wide temperature range with fast response frequencies, which make them the best candidate for beam displacement measurements. A growing interest in the field of optics are beams carrying orbital angular momentum (OAM), particularly Laguerre-Gaussian (LG) beams, due to their remarkable applications, which include optical tracking and gravitational wave detection. This study shows the combined effect of using different OAM modes of LG beam and varying angles of inclination of the QD on the sensitivity response and linearity index of the QD. In general, it was observed that a lower OAM value for the LG beam gives a higher sensitivity for the QD and a higher angle of inclination for the QD leads to a higher linearity index. This result gives a larger range of application for the QD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.