Abstract

Thanks to compact data representations and fast similarity computation, many binary code embedding techniques have been recently proposed for large-scale similarity search used in many computer vision applications including image retrieval. Most of prior techniques have centered around optimizing a set of projections for accurate embedding. In spite of active research efforts, existing solutions suffer both from diminishing marginal efficiency as more code bits are used, and high quantization errors naturally coming from the binarization. In order to reduce both quantization error and diminishing efficiency we propose a novel binary code embedding scheme, Quadra-Embedding, that assigns two bits for each projection to define four quantization regions, and a novel binary code distance function tailored specifically to our encoding scheme. Our method is directly applicable to a wide variety of binary code embedding methods. Our scheme combined with four state-of-the-art embedding methods has been evaluated with three public image benchmarks. We have observed that our scheme achieves meaningful accuracy improvement in most experimental configurations under k- and e-NN search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.