Abstract

A trajectory tracking control for quadcopter unmanned aerial vehicle (UAV) based on a nonlinear robust backstepping algorithm and extended state/disturbance observer (ESDO) is presented in this paper. To obtain robust attitude stabilization and superior performance of three-dimension position tracking control, the construction of the proposed algorithm can be separated into three parts. First, a mathematical model of UAV negatively influenced by exogenous disturbances is established. Following, an extended state/disturbance observer using a general second-order model is designed to approximate undesirable influences of perturbations on the UAVs dynamics. Finally, a nonlinear robust controller is constructed by an integration of the nominal backstepping technique with ESDO to enhance the performance of attitude and position control mode. Robust stability of the closed-loop disturbed system is obtained and guaranteed through the Lyapunov theorem without precise knowledge of the upper bound condition of perturbations. Lastly, a numerical simulation is carried out and compared with other previous controllers to demonstrate the great advantage and effectiveness of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.