Abstract
This article presents vertically coupled, rectangular complementary split-ring resonator-shaped quad-band double-negative (DNG) metamaterial unit cells, that is, having both negative permittivity and permeability, which redirect negative refractive and also are not found in nature. The metamaterial is fabricated on magnesium zinc ferrite-based flexible microwave substrates, and the flexible substrates are chosen with two different concentrations of magnesium (Mg) denoted by Mg30 and Mg50 for 30% and 50% of Mg, which possess dielectric constants of 4.32 and 3.15 and loss tangents of 0.003 and 0.005, respectively. The proposed metamaterials are demonstrated by utilizing the CST microwave simulator, and their effective parameters are extracted according to the Nicolson-Ross-Wire method. With Mg30, the prepared, flexible metamaterial shows measured resonances at 3.70 GHz, 7 GHz, 8.60 GHz, and 9.78 GHz, whereas with Mg50 it shows the measured resonances at 4.10 GHz, 7.70 GHz, 9.33 GHz, and 10.62 GHz. Very good effective medium ratios (EMR) along with DNG properties are obtained, namely 6.5 and 5.85 for Mg30 and Mg50, respectively, with a physical dimension of 12.5 × 9.5 mm2 for both of the unit cells. Also, the electric field, magnetic field, and surface current distribution at different resonances and the polarization insensitivity at different polarization angles were observed. Thus, the designed new flexible substrate microwave materials based on DNG metamaterials are potential candidates for S-, C- and X-band applications, as well as for flexible microwave technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.