Abstract

Structure and function studies of membrane proteins, particularly G protein-coupled receptors and multipass transmembrane proteins, require detergents. We have devised a simple tool, the QTY code (glutamine, threonine, and tyrosine), for designing hydrophobic domains to become water soluble without detergents. Here we report using the QTY code to systematically replace the hydrophobic amino acids leucine, valine, isoleucine, and phenylalanine in the seven transmembrane α-helices of CCR5, CXCR4, CCR10, and CXCR7. We show that QTY code-designed chemokine receptor variants retain their thermostabilities, α-helical structures, and ligand-binding activities in buffer and 50% human serum. CCR5QTY, CXCR4QTY, and CXCR7QTY also bind to HIV coat protein gp41-120. Despite substantial transmembrane domain changes, the detergent-free QTY variants maintain stable structures and retain their ligand-binding activities. We believe the QTY code will be useful for designing water-soluble variants of membrane proteins and other water-insoluble aggregated proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.