Abstract
Database knob tuning is important to achieve high performance (e.g., high throughput and low latency). However, knob tuning is an NP-hard problem and existing methods have several limitations. First, DBAs cannot tune a lot of database instances on different environments (e.g., different database vendors). Second, traditional machine-learning methods either cannot find good configurations or rely on a lot of high-quality training examples which are rather hard to obtain. Third, they only support coarse-grained tuning (e.g., workload-level tuning) but cannot provide fine-grained tuning (e.g., query-level tuning). To address these problems, we propose a query-aware database tuning system QTune with a deep reinforcement learning (DRL) model, which can efficiently and effectively tune the database configurations. QTune first featurizes the SQL queries by considering rich features of the SQL queries. Then QTune feeds the query features into the DRL model to choose suitable configurations. We propose a Double-State Deep Deterministic Policy Gradient (DS-DDPG) model to enable query-aware database configuration tuning, which utilizes the actor-critic networks to tune the database configurations based on both the query vector and database states. QTune provides three database tuning granularities: query-level, workload-level, and cluster-level tuning. We deployed our techniques onto three real database systems, and experimental results show that QTune achieves high performance and outperforms the state-of-the-art tuning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.