Abstract

This work focuses on investigating an end-to-end learning approach for quantum neural networks (QNN) on noisy intermediate-scale quantum devices. The proposed model combines a quantum tensor network (QTN) with a variational quantum circuit (VQC), resulting in a QTN-VQC architecture. This architecture integrates a QTN with a horizontal or vertical structure related to the implementation of quantum circuits for a tensor-train network. The study provides theoretical insights into the quantum advantages of the end-to-end learning pipeline based on QTN-VQC from two perspectives. The first perspective refers to the theoretical understanding of QTN-VQC with upper bounds on the empirical error, examining its learnability and generalization powers; The second perspective focuses on using the QTN-VQC architecture to alleviate the Barren Plateau problem in the training stage. Our experimental simulation on CPU/GPUs is performed on a handwritten digit classification dataset to corroborate our proposed methods in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call