Abstract

Phytoextraction by high-Cd-accumulating rice lacking a functional OsHMA3 allele is promising for Cd removal from paddy soils. To increase rice Cd extraction efficiency, we developed a new high-Cd variety, TJN25-11. For this, we pyramided a nonfunctional OsHMA3 allele from a high-Cd variety, Jarjan, and two QTLs for increased shoot Cd concentrations, which were discovered in a mapping population derived from a high-Cd variety, Nepal 555, and a low-Cd variety, Tachisugata. In two Cd-contaminated paddy fields under drained aerobic soil conditions, TJN25-11 presented significantly higher Cd concentrations in the straw and panicles than the OsHMA3-deficient varieties TJTT8 and Cho-ko-koku. Among the varieties, TJN25-11 had a relatively high shoot biomass, resulting in the highest Cd accumulation in the shoots. The soil Cd decreased by approximately 20% after TJN25-11 growth. The amount of Cd that accumulated in the TJN25-11 aerial parts was much greater than the amount of Cd that decreased in the topsoil, suggesting that Cd was absorbed from deeper soil layers. Thus, we revealed the effects of QTL pyramiding on shoot Cd accumulation and Cd phytoextraction efficiency. Since TJN25-11 has favorable agronomic traits for compatibility with Japanese cultivation systems, this variety could be useful for Cd phytoextraction in Cd-contaminated paddy fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call