Abstract
Latitudinal genetic clines in body size are common in many ectotherm species and are attributed to climatic adaptation. Here, we use Quantitative Trait Loci (QTL) mapping to identify genomic regions associated with adaptive variation in body size in natural populations of Drosophila melanogaster from extreme ends of a cline in South America. Our results show that there is a significant association between the positions of QTL with strong effects on wing area in South America and those previously reported in a QTL mapping study of Australian cline end populations (P < 0.05). In both continents, the right arm of the third chromosome is associated with QTL with the strongest effect on wing area. We also show that QTL peaks for wing area and thorax length are associated with the same genomic regions, indicating that the clinal variation in the body size traits may have a similar genetic basis. The consistency of the results found for the South American and Australian cline end populations indicate that the genetic basis of the two clines may be similar and future efforts to identify the genes producing the response to selection should be focused on the genomic regions highlighted by the present work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.