Abstract

IntroductionThe mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations.Methodology/Principal FindingsQuantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México.Conclusions/SignificanceTemephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

Highlights

  • Aedes aegypti is the principal vector of Dengue Fever (DENV) and Yellow Fever (YFV) flaviviruses throughout tropical and subtropical regions of the world and 2.5 billion people are at risk for DENV infection [1]

  • The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses

  • Due to a lack of effective drugs or vaccines, if an epidemic of dengue fever occurs in the near future, the first line of defense will involve the use of insecticides to suppress adult populations of Ae. aegypti

Read more

Summary

Introduction

The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Aedes aegypti is the principal vector of Dengue Fever (DENV) and Yellow Fever (YFV) flaviviruses throughout tropical and subtropical regions of the world and 2.5 billion people are at risk for DENV infection [1]. Temephos is the most widely used of these three due to its very low vertebrate toxicity, relatively low cost, the fact that methoprene is a growth regulator with greatest effectiveness against older (third and fourth instar) larvae [10] and, because Bti must be ingested to be effective, it does not affect late larval or pupal stages when active feeding has ceased. Temephos is one of a few organophosphates registered to control Ae. aegypti larvae, and is the only organophosphate with any appreciable larvicidal use

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call