Abstract

Pumpkin is a popular vegetable crop and exhibits a broad diversity in fruit shape and size. Fruit-related traits are the decisive factors determining consumer acceptance and market value of pumpkin cultivar. As a result, deciphering the genetic basis of fruit-related traits is of great importance for pumpkin breeding. To address this problem, a F2 population was generated by two Cucurbita moschata inbred lines with contrasting fruit shapes, and genotyping by sequencing approach was used to construct a genetic map and localize the QTLs underlying the fruit-related traits in this study. The results showed that a high-quality genetic map was constructed for pumpkin, which comprised of 2413 bins and spanned a total length of 2252.10 cM with an average genetic distance of 0.94 cM. Thirty significant QTLs with moderate or small effects were identified for seven fruit-related traits, including fruit length, fruit diameter, fruit shape index, fruit weight, fruit flesh thickness, seed cavity size, and total soluble solids content. Co-locations were observed between the QTLs underlying different traits, demonstrating that pleiotropic effect plays an important role in genetic control of fruit-related traits. The identified QTLs provide valuable information for further fine mapping of the related genes and pumpkin breeding programs with the aim of improving fruit quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call