Abstract

AbstractGrowing sugar beet (Beta vulgaris L. ssp. vulgaris) as a winter crop in cool temperate climates is expected to increase yield potential. However, this requires bolting resistance after winter. One strategy to achieve complete bolting resistance is to accumulate genes for bolting delay from various genetic resources within the B. vulgaris gene pool. To identify such genes, a QTL mapping was performed in a segregating population derived from a biennial leaf beet with delayed bolting after winter. The population was tested for bolting delay after winter in two different experiments with natural or artificial vernalization. Three QTL for bolting delay were mapped on linkage groups 3, 5 and 9 affecting bolting time by up to 19 days. These QTL could be combined with recently reported bolting QTL to develop a winter sugar beet with complete bolting resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call