Abstract

BackgroundHigh-temperature fermentation is desirable for the industrial production of ethanol, which requires thermotolerant yeast strains. However, yeast thermotolerance is a complicated quantitative trait. The understanding of genetic basis behind high-temperature fermentation performance is still limited. Quantitative trait locus (QTL) mapping by pooled-segregant whole genome sequencing has been proved to be a powerful and reliable approach to identify the loci, genes and single nucleotide polymorphism (SNP) variants linked to quantitative traits of yeast.ResultsOne superior thermotolerant industrial strain and one inferior thermosensitive natural strain with distinct high-temperature fermentation performances were screened from 124 Saccharomyces cerevisiae strains as parent strains for crossing and segregant isolation. Based on QTL mapping by pooled-segregant whole genome sequencing as well as the subsequent reciprocal hemizygosity analysis (RHA) and allele replacement analysis, we identified and validated total eight causative genes in four QTLs that linked to high-temperature fermentation of yeast. Interestingly, loss of heterozygosity in five of the eight causative genes including RXT2, ECM24, CSC1, IRA2 and AVO1 exhibited positive effects on high-temperature fermentation. Principal component analysis (PCA) of high-temperature fermentation data from all the RHA and allele replacement strains of those eight genes distinguished three superior parent alleles including VPS34, VID24 and DAP1 to be greatly beneficial to high-temperature fermentation in contrast to their inferior parent alleles. Strikingly, physiological impacts of the superior parent alleles of VPS34, VID24 and DAP1 converged on cell membrane by increasing trehalose accumulation or reducing membrane fluidity.ConclusionsThis work revealed eight novel causative genes and SNP variants closely associated with high-temperature fermentation performance. Among these genes, VPS34 and DAP1 would be good targets for improving high-temperature fermentation of the industrial yeast. It also showed that loss of heterozygosity of causative genes could contribute to the improvement of high-temperature fermentation capacities. Our findings would provide guides to develop more robust and thermotolerant strains for the industrial production of ethanol.

Highlights

  • High-temperature fermentation is desirable for the industrial production of ethanol, which requires thermotolerant yeast strains

  • Selection of parent strains for genetic mapping of thermotolerance Total 124 natural, laboratory and industrial isolates of S. cerevisiae collected in our lab (Additional file 1: Table S1) were evaluated for their high-temperature fermentation performances

  • Two major Quantitative trait locus (QTL) and two minor QTLs as well as eight causative genes containing nonsynonymous single nucleotide polymorphisms (SNPs) variants were identified to be closely linked to yeast thermotolerance

Read more

Summary

Introduction

High-temperature fermentation is desirable for the industrial production of ethanol, which requires thermotolerant yeast strains. It is very challenging to develop robust S. cerevisiae strains with enhanced thermotolerance to meet industrial requirement. To identify novel genes and elucidate the intricate mechanism of thermotolerance, many methods were developed [8,9,10,11,12]. These approaches have disclosed a number of causative genes and revealed some compounds, e.g. sterol composition, for responding to the thermal stress, identification of quantitative trait genes still faced with tremendous challenges, including variable contributions of quantitative trait loci (QTL), epistasis [13], genetic heterogeneity [14], etc

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call