Abstract

Volatile organic compounds (VOCs) are fundamental elements of flavor, one of the most important fruit-quality traits. Despite its importance, this aspect is still poorly considered in assisted breeding programs, due to the lack of suitable and fast detection systems as well as validated functional markers. In this work, a full-sib parental mapping population (‘Fuji × Delearly’) was initially employed to perform a comprehensive quantitative trait locus (QTL) survey, to assess the VOC segregation detected by a novel proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) on fruit collected after a 2-month period of postharvest storage. Among this set of genomic regions, on chromosome 2 was also verified the coincident location between a group of QTLs, mainly associated to esters and alcohols, with a functional marker designed for Md-AAT1, a gene involved in the last step of the ester biosynthetic pathway. The allelic effect of this marker (here named Md-AAT1SSR) was further validated by candidate gene association mapping approach in a collection of 124 apple accessions. In this case, the volatile profiling was performed on peeled fruit flesh, as an important fraction of the aromatic blend of apple is released only after cutting. This work proposed a new and fast method for aroma phenotyping as well as a novel marker for an easy and widely applicable apple fruit quality advanced selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.