Abstract

The clinically useful prognostic value of precordial QT dispersion in patients with heart disease is generally attributed to its measurement of regional heterogeneity of ventricular repolarization. However, when repolarization is abnormal, differences in measured QT intervals might result simply from variation in projection of the T-wave loop. To provide insight into the mechanism of QT dispersion, we used an analog device to transform conventional 12-lead electrocardiograms (ECGs) of 78 patients to derived 12-lead ECGs based on the heart vector. Because the electrical activity of the heart is represented by a single dipole, all QT dispersion in the transformed ECGs results from variation in projection of the T-wave loop and cannot be due to local heterogeneity of repolarization. Measured as the difference between the longest and shortest precordial QT intervals, QT dispersion in the derived ECGs, with no local heterogeneity of repolarization, was 53 ± 49 ms (mean ± SD). QT dispersion in these derived ECGs was similar in magnitude to that measured from the original standard 12-lead ECGs in these patients (49 ± 23 ms, p = NS). Therefore, the precordial QT dispersion measured from standard ECGs of patients with coronary artery disease can be explained by interlead variation in precordial projection of the T-wave loop. Although regional heterogeneity might still contribute to precordial repolarization findings and to prognosis, this is not required to explain the QT dispersion observed in patients with coronary artery disease. Therefore, QT interval dispersion is not equivalent to heterogeneity of repolarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.