Abstract

The paper describes QSWalk.jl package for Julia programming language, developed for the purpose of simulating the evolution of open quantum systems. The package enables the study of quantum procedures developed using stochastic quantum walks on arbitrary directed graphs. We provide a detailed description of the implemented functions, along with a number of usage examples. The package is compared with the existing software offering a similar functionality. Program summaryProgram Title:QSWalk.jlProgram Files doi:http://dx.doi.org/10.17632/6x37kcvvrp.1Licensing provisions: MITProgramming language: JuliaNature of problem: The package implements functions for simulating quantum stochastic walks, including local regime, global regime, and nonmoralizing global regime (Julia documentation, 2018). It can be used for arbitrary quantum continuous evolution based on GKSL master equation on arbitrary graphs.Solution method: We utilize Expokit routines for fast sparse matrix exponentials on vectors. For dense matrices, exponentiation is computed separately, which is faster for small matrices.Restrictions: Currently package requires Julia v0.6 or higher.[1] K. Domino, A. Glos, M. Ostaszewski, Superdiffusive quantum stochastic walk definable of arbitrary directed graph, Quantum Inform. Comput 17 (11-12) (2017) 973–986.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.