Abstract

BackgroundThe quantitative structure property relationship (QSPR) for octanol/air partition coefficient (KOA) of polybrominated diphenyl ethers (PBDEs) was investigated. Molecular distance-edge vector (MDEV) index was used as the structural descriptor of PBDEs. The quantitative relationship between the MDEV index and the lgKOA of PBDEs was modeled by multivariate linear regression (MLR) and artificial neural network (ANN) respectively. Leave one out cross validation and external validation was carried out to assess the predictive ability of the developed models. The investigated 22 PBDEs were randomly split into two groups: Group I, which comprises 16 PBDEs, and Group II, which comprises 6 PBDEs.ResultsThe MLR model and the ANN model for predicting the KOA of PBDEs were established. For the MLR model, the prediction root mean square relative error (RMSRE) of leave one out cross validation and external validation is 2.82 and 2.95, respectively. For the L-ANN model, the prediction RMSRE of leave one out cross validation and external validation is 2.55 and 2.69, respectively.ConclusionThe developed MLR and ANN model are practicable and easy-to-use for predicting the KOA of PBDEs. The MDEV index of PBDEs is shown to be quantitatively related to the KOA of PBDEs. MLR and ANN are both practicable for modeling the quantitative relationship between the MDEV index and the KOA of PBDEs. The prediction accuracy of the ANN model is slightly higher than that of the MLR model. The obtained ANN model shoud be a more promising model for studying the octanol/air partition behavior of PBDEs.

Highlights

  • The quantitative structure property relationship (QSPR) for octanol/air partition coefficient (KOA) of polybrominated diphenyl ethers (PBDEs) was investigated

  • Molecular distance-edge vector (MDEV) index can be generated easier than quantum chemical descriptors

  • Two QSPR models for the octanol/air partition of PBDEs were developed by using multivariate linear regression (MLR) and L-artificial neural network (ANN) respectively

Read more

Summary

Introduction

The quantitative structure property relationship (QSPR) for octanol/air partition coefficient (KOA) of polybrominated diphenyl ethers (PBDEs) was investigated. Molecular distance-edge vector (MDEV) index was used as the structural descriptor of PBDEs. The quantitative relationship between the MDEV index and the lgKOA of PBDEs was modeled by multivariate linear regression (MLR) and artificial neural network (ANN) respectively. It is still worthwhile to develop an easy-to-use QSPR model for the KOA of PBDEs. Topological index is a kind of structural descriptor which has been widely used in the QSPR researches. Molecular distance-edge vector (MDEV) index [19,20,21] was used as the structural descriptor of PBDEs. Multivariate linear regression (MLR) and artificial neural network (ANN) were employed to build the calibration model between the MDEV index and the KOA of PBDEs

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.