Abstract
Quantitative structure-property relationship (QSPR) modeling was investigated to predict drug and drug-like compounds solubility in supercritical carbon dioxide. A dataset of 148 drug\drug-like compounds, accounting for 3971 experimental data points (EDPs), was collected and used for modelling the relationship between selected molecular descriptors and solubility fraction data achieved by a nonlinear approach (Artificial neural network, ANN) based on molecular descriptors. Experimental solubility data for a given drug were published as a function of temperature and pressure. In the present study, 11 significant PaDEL descriptors (AATS3v, MATS2e, GATS4c, GATS3v, GATS4e, GATS3 s, nBondsM, AVP-0, SHBd, MLogP, and MLFER_S), the temperature and the pressure were statistically proved to be sufficient inputs. The architecture of the optimized model was found to be {13,10,1}. Several statistical metrics, including average absolute relative deviation (AARD=3.7748 %), root mean square error (RMSE=0.5162), coefficient of correlation (r=0.9761), coefficient of determination (R2 =0.9528), and robustise (Q2 =0.9528) were used to validate the obtained model. The model was also subjected to an external test by using 143 EDPs. Sensitivity analysis and domain of application were examined. The overall results confirmed that the optimized ANN-QSPR model is suitable for the correlation and prediction of this property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.