Abstract
The chemicals that are jointly Persistent, Bioaccumulative and Toxic (PBT) are substances of very high concern (SVHC) and subject to an authorization step in the new European REACH regulation, which includes plans for safer substitutions of recognized hazardous compounds. The limited availability of experimental data necessary for the hazard/risk assessment of chemicals and the expected high costs have increased the interest, also in REACH, for alternative predictive in silico methods, such as Quantitative Structure–Activity (Property) Relationships (QSA(P)Rs). A structurally-based approach is proposed here for a holistic screening of potential PBTs in the environment. Persistence, bioconcentration and toxicity data available for a set of 180 organic chemicals, some of which are known PBTs, have been combined in a multivariate approach by Principal Component Analysis. This method is applied to rank the studied compounds according to their cumulative PBT behaviour; this ranking can be defined as a PBT Index. A simple, robust and externally predictive QSPR multiple linear regression model (MLR), which is based on four molecular descriptors, has been developed for the PBT Index. This QSPR model is proposed as a hazard screening tool, applicable also by regulators, for the early identification and prioritization of not yet known PBTs, only on the basis of the knowledge of their molecular structure. New, safer chemicals can be designed as alternatives to hazardous PBT chemicals by applying the proposed QSPR model, according to the green chemistry philosophy of “benign by design”. A consensus approach is also proposed from the comparison of the results obtained by different screening methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.